Los op:
-
$x^2-6x-16=0$
-
$(2x+4)^2=(x-3)^2$
-
$(x+4)\sqrt{2x-4}=(x-3)(x+4)$
-
$2x(x^3-4x+1)=2x$
-
$\eqalign{\frac{2x-3}{x^4-3x^3+2x^2-x+1}=0}$
-
$\eqalign{\frac{2}{x-1}=x+3}$
-
$\eqalign{\frac{2x-5}{x^2-1}=\frac{2x-5}{4x+1}}$
-
$\eqalign{\frac{{x - 4}}{{x - 1}} = \frac{{x + 2}}{{x - 3}}}$
-
$\eqalign{\frac{{4x + 1}}{{{x^4} - 6{x^3} + 2{x^2}}} = \frac{{x - 1}}{{{x^4} - 6{x^3} + 2{x^2}}}}$
|