Actueel Archief Culinair Didactiek Documentatie Etalage Formules Fotoboeken Functies Geschiedenis ICT ICTauteur Laatste nieuws Lesmateriaal Muziek Natuur Onderwijs Ontspanning Persoonlijk Probleemaanpak Proeftuin Puzzels Rekenen Rekenmachines Ruimtemeetkunde Schoolwiskunde Snippers Systeem Taal van de wiskunde Vergelijkingen Verhalen WisFaq WisKast
|
Uitwerkingen van de oefeningen
Opgave 1
$
\begin{array}{*{20}c}
\begin{array}{l}
a. \\
\\
\\
\\
\\
\\
\end{array} & \begin{array}{l}
3x^2 = 5x \\
3x^2 - 5x = 0 \\
x(3x - 5) = 0 \\
x = 0 \vee 3x - 5 = 0 \\
x = 0 \vee 3x = 5 \\
x = 0 \vee x = 1\frac{2}{3} \\
\end{array} \\
\end{array}
$ |
$
\begin{array}{*{20}c}
\begin{array}{l}
b. \\
\\
\\
\\
\end{array} & \begin{array}{l}
(3x + 3)(2x - 5) = 0 \\
3x + 3 = 0 \vee 2x - 5 = 0 \\
3x = - 3 \vee 2x = 5 \\
x = - 1 \vee x = 2\frac{1}{2} \\
\end{array} \\
\end{array}
$ |
$
\begin{array}{*{20}c}
\begin{array}{l}
c. \\
\\
\\
\\
\end{array} & \begin{array}{l}
(3x - 1)^2 = 16 \\
3x - 1 = - 4 \vee 3x - 1 = 4 \\
3x = - 3 \vee 3x = 5 \\
x = - 1 \vee x = 1\frac{2}{3} \\
\end{array} \\
\end{array}
$ |
$
\begin{array}{*{20}c}
\begin{array}{l}
d. \\
\\
\\
\\
\\
\\
\\
\end{array} & \begin{array}{l}
(x + 2)^2 + (x + 3)^2 = 1 \\
x^2 + 4x + 4 + x^2 + 6x + 9 = 1 \\
2x^2 + 10x + 13 = 1 \\
2x^2 + 10x + 12 = 0 \\
x^2 + 5x + 6 = 0 \\
(x + 2)(x + 3) = 0 \\
x = - 2 \vee x = - 3 \\
\end{array} \\
\end{array}
$ |
$
\begin{array}{*{20}c}
\begin{array}{l}
e. \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} & \begin{array}{l}
8x^2 + 2x - 3 = 0 \\
8\left( {x^2 + \frac{1}{4}x} \right) - 3 = 0 \\
8\left( {\left( {x + \frac{1}{8}} \right)^2 - \frac{1}{{64}}} \right) - 3 = 0 \\
8\left( {x + \frac{1}{8}} \right)^2 - \frac{1}{8} - 3 = 0 \\
8\left( {x + \frac{1}{8}} \right)^2 - 3\frac{1}{8} = 0 \\
8\left( {x + \frac{1}{8}} \right)^2 = 3\frac{1}{8} \\
\left( {x + \frac{1}{8}} \right)^2 = \frac{{25}}{{64}} \\
x + \frac{1}{8} = - \frac{5}{8} \vee x + \frac{1}{8} = \frac{5}{8} \\
x = - \frac{3}{4} \vee x = \frac{1}{2} \\
\end{array} \\
\end{array}
$ |
$
\begin{array}{*{20}c}
\begin{array}{l}
f. \\
\\
\\
\end{array} & \begin{array}{l}
12x^2 = 144 \\
x^2 = 12 \\
x = - \sqrt {12} \vee x = \sqrt {12} \\
\end{array} \\
\end{array}
$ |
Opgave 2
$
\begin{array}{l}
f(x) = x^2 + 2x - 1 = \left( {x + 1} \right)^2 - 2 \to Top( - 1, - 2) \\
g(x) = - 2x^2 + 6 \to Top(0,6) \\
h(x) = 3x^2 - 30x + 50 = 3(x - 5)^2 - 25 \to Top(5, - 25) \\
k(x) = - 4x^2 - 16x - 28 = - 4(x + 2)^2 - 12 \to Top( - 2, - 12) \\
\end{array}
$
Opgave 3
a. |
$
\begin{array}{l}
x^2 + 4x = - 10 \\
(x + 2)^2 - 4 = - 10 \\
(x + 2)^2 = - 6 \\
{\rm{Geen}}\,\,{\rm{oplossing}} \\
\end{array}
$ |
b. |
$
\begin{array}{l}
2\left( {x^2 + 3} \right) = 2 \\
x^2 + 3 = 1 \\
x^2 = - 2 \\
{\rm{Geen}}\,\,{\rm{oplossing}} \\
\end{array}
$ |
c. |
$
\begin{array}{l}
4x^2 - 4x + 1 = 25 \\
4x^2 - 4x - 24 = 0 \\
x^2 - x - 6 = 0 \\
(x - 3)(x + 2) = 0 \\
x = 3 \vee x = - 2 \\
\end{array}
$ |
d. |
$
\begin{array}{l}
(2x + 2)^2 = (3x - 3)^2 \\
2x + 2 = 3x - 3 \vee 2x + 2 = - 3x + 3 \\
- x = - 5 \vee 5x = 1 \\
x = 5 \vee x = \frac{1}{5} \\
\end{array}
$ |
©2004-2024 W.v.Ravenstein
|