Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Naschrift

Having found this relatively laborious solution, I stumbled across a truly remarkable formula for the area of an arbitrary quadrilateral. This is known as Brahmagupta's formula.

For a quadrilateral with sides a, b, c, d, semi-perimeter s, and for which q is half the sum of two opposite angles (it doesn't matter which pair), the area is given by:

A = $\sqrt{(s−a)(s−b)(s−c)(s−d)−abcd\cdot cos^{2}q}$

For a cyclic quadrilateral, i.e., a quadrilateral that can be inscribed in a circle, and for which the sum of opposite angles is $180^{o}$, $cos{q}=0$, thereby maximizing the area.

From this formula, the answer of $2\sqrt{6}$ drops straight out. Of course, a lot of work is embodied in that formula!

bron

©2004-2024 W.v.Ravenstein