Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Betrouwbaarheidsintervallen

Voorbeeld 1

Bij een onderzoek vindt men een 95%-betrouwbaarheidsinterval van [0,555;0,605].

  • Bereken de steekproefomvang

Uitwerking

Het interval $[0,555;0,605]$ staat voor $[\mu-2\sigma;\mu+2\sigma]$, dus tussen 0,555 en 0,605 zit $4\sigma$ verschil. Dus geldt:

  • $4\sigma=0,605-0,555=0,05$ dus $\sigma=0,0125$.

$\mu$ ligt in het midden van 0,555 en 0,605, dus geldt:

  • $\eqalign{\mu=\frac{0,555+0,605}{2}=0,58}$

Vul nu de formule $\eqalign{\sigma=\sqrt{\frac{\widehat p(1-\widehat p)}{n}}}$ in:

  • $\eqalign{\sigma=\sqrt{\frac{0,58\cdot0,42}{n}}=0,0125}$

Met je GR kan je dan de vergelijking oplossen.

  • n=1559
q12623img1.gif

Voorbeeld 2

Bij een onderzoek onder D66-stemmers blijkt dat 55% het koningshuis wil behouden. Het bijbehorende betrouwbaarheidsinterval was [049;061].

  • Hoeveel D66-stemmers zijn ondervraagd als het een 95%-betrouwbaarheidsinterval betreft?

Uitwerking

Bij een 95%-betrouwbaarheidsinterval weet je dat $4\sigma=0,61-0,49=0,12$. Dus $\sigma=0,03$.

$\eqalign{\widehat p=\frac{0,49+0,61}{2}=0,55}$

Vul de formule $\eqalign{\sigma=\sqrt{\frac{\widehat p(1-\widehat p)}{n}}}$ in:

$\eqalign{\sqrt{\frac{0,55\cdot0,45}{n}}=0,03}$

Deze vergelijking kan je oplossen met je GR...

Er zijn 275 D66-stemmers ondervraagd.

q12622img2.gif

©2004-2024 W.v.Ravenstein