Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Oplossing week 27

Er zijn in totaal 9! manieren voor 9 mensen om plaats te nemen aan een ronde tafel. Daarbij tellen alle 'schikkingen' waarbij iedereen dezelfde buren heeft als aparte mogelijkheid meegeteld. Maar dat zijn er steeds 9. Ga maar na, de eerste persoon kan op 9 verschillende stoelen gaan zitten terwijl de rest op dezelfde manier aansluit... Dus: 9!/9=8!

Nu tel je elke 'schikking' ook nog 2 keer! Namelijk het spiegelbeeld van een schikking levert 'dezelfde buren' op... dus je moet ook nog delen door 2.

$
\eqalign{\frac{{9!}}
{{9 \cdot 2}} = {\text{20}}{\text{.160}}}
$

©2004-2024 W.v.Ravenstein