Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Symmetrie bij functies

Lijnsymmetrie


De grafiek van f heeft de lijn x=a als symmetrie-as als voor elke waarde van p geldt:

  • f(a+p)=f(a-p)

Met a+p en a-p beide behorend bij het domein van f

Voorbeeld

$
\eqalign{
  & f(x) = (x - 2)^4  - 2  \cr
  & Heeft\,\,als\,\,symmetrie - as:x = 2  \cr
  & Er\,\,geldt:f(2 + p) = f(2 - p)\,\,voor\,\,p \in R  \cr
  & f(2 + p) = f(2 - p)  \cr
  & (2 + p - 2)^4  - 2 = (2 - p - 2)^4  - 2  \cr
  & p^4  - 2 = \left( { - p} \right)^4  - 2  \cr
  & Klopt! \cr}
$
q3952img3.gif

 

Puntsymmetrie


De grafiek van f is puntsymmetrisch in het punt (a,b) als het gemiddelde van f(a+p) en f(a-p) gelijk is aan b voor elke waarde van p.

Met a+p en a-p behorend tot het domein van f.

Voorbeeld

$
\eqalign{
  & f(x) = \left( {x - 2} \right)^3  - 3  \cr
  & Is\,\,puntsymmetrisch\,\,in\,\,(2, - 3):  \cr
  & Er\,\,geldt:\frac{{f(2 + p) + f(2 - p)}}
{2} =  - 3  \cr
  & \frac{{\left( {2 + p - 2} \right)^3  - 3 + \left( {2 - p - 2} \right)^3  - 3}}
{2} =   \cr
  & \frac{{\left( p \right)^3  - 3 + \left( { - p} \right)^3  - 3}}
{2} =   \cr
  & \frac{{p^3  - 3 - p^3  - 3}}
{2} =   \cr
  & \frac{{ - 6}}
{2} =  - 3  \cr
  & Klopt! \cr}
$
q3952img4.gif

©2004-2024 W.v.Ravenstein