$ \eqalign{ & a^p \cdot a^q = a^{p + q} \cr & \left( {a^p } \right)^q = a^{pq} \cr & \left( {ab} \right)^p = a^p \cdot b^p \cr & \frac{{a^p }} {{a^q }} = a^{p - q} \cr} $ |
$ \eqalign{ & a^1 = a \cr & a^0 = 1 \cr & a^{ - p} = \frac{1} {{a^p }} \cr} $ |