0. Een vergelijking met machten


Opgave

Los op:


Uitwerking

$
\eqalign{
  & 0,125^{2x}  = \sqrt {32}   \cr
  & \left( {\frac{1}
{8}} \right)^{2x}  = \sqrt {2^5 }   \cr
  & \left( {2^{ - 3} } \right)^{2x}  = 2^{2\frac{1}
{2}}   \cr
  & 2^{ - 6x}  = 2^{2\frac{1}
{2}}   \cr
  &  - 6x = 2\frac{1}
{2}  \cr
  &  - 12x = 5  \cr
  & x =  - \frac{5}
{{12}} \cr}
$


Toelichting
De aanpak is om beide leden van de vergelijking te schrijven als een macht van 2. Je krijgt dan iets van de vorm $2^a=2^b$. Het gaat hier over een exponentieële functie zodat je weet dat $a=b$*. Logaritmen zijn (in dit geval) niet nodig.

Begrip en inzicht

a

$
\eqalign{
& 4^{x - 2} \cdot 8^{3x - 1} = \sqrt 2 \cr
& \left( {2^2 } \right)^{x - 2} \cdot \left( {2^3 } \right)^{3x - 1} = 2^{\frac{1}
{2}} \cr
& 2^{2x - 4} \cdot 2^{9x - 3} = 2^{\frac{1}
{2}} \cr
& 2^{2x - 4 + 9x - 3} = 2^{\frac{1}
{2}} \cr
& 2^{11x - 7} = 2^{\frac{1}
{2}} \cr
& 11x - 7 = \frac{1}
{2} \cr
& 11x = 7\frac{1}
{2} \cr
& x = \frac{{15}}
{{22}} \cr}
$

b

$
\eqalign{
& 9 \cdot 3^{2x} - 3^{x + 2} = 54 \cr
& 9 \cdot 3^{2x} - 9 \cdot 3^x = 54 \cr
& 3^{2x} - 3^x = 6 \cr
& \left( {3^x } \right)^2 - 3^x - 6 = 0 \cr
& y^2 - y - 6 = 0 \cr
& (y - 3)(y + 2) = 0 \cr
& y = 3\,\,of\,\,y = - 2 \cr
& 3^x = 3\,\,of\,\,3^x = - 2\,\,(kan\,\,niet) \cr
& x = 1 \cr}
$

c

$
\eqalign{
& 3^{x^2 } = \left( {\frac{1}
{3}} \right)^{ - x - 2} \cr
& 3^{x^2 } = \left( {3^{ - 1} } \right)^{ - x - 2} \cr
& 3^{x^2 } = 3^{x + 2} \cr
& x^2 = x + 2 \cr
& x^2 - x - 2 = 0 \cr
& (x - 2)(x + 1) = 0 \cr
& x = 2 \vee x = - 1 \cr}
$

d

$
\eqalign{
& \left( {\frac{1}
{2}\sqrt 2 } \right)^{2x + 3} = 2^x \cr
& \left( {2^{ - 1} \cdot 2^{\frac{1}
{2}} } \right)^{2x + 3} = 2^x \cr
& \left( {2^{ - \frac{1}
{2}} } \right)^{2x + 3} = 2^x \cr
& 2^{ - x - 1\frac{1}
{2}} = 2^x \cr
& - x - 1\frac{1}
{2} = x \cr
& 2x = - 1\frac{1}
{2} \cr
& x = - \frac{3}
{4} \cr}
$

e

$
\eqalign{
& {2}^{{x - 3}} \cdot 5^{x + 1} = 62,5 \cr
& 2^{ - 4} \cdot {2}^{{x + 1}} \cdot 5^{x + 1} = 62,5 \cr
& {2}^{{x + 1}} \cdot 5^{x + 1} = 1000 \cr
& 10^{x + 1} = 1000 \cr
& 10^{x + 1} = 10^3 \cr
& x + 1 = 3 \cr
& x = 2 \cr}
$

f

$
\eqalign{
& 16^x = 8 + 7 \cdot 4^x \cr
& 4^{2x} = 8 + 7 \cdot 4^x \cr
& Neem\,\,\,t = 4^x \cr
& t^2 = 8 + 7t \cr
& t^2 - 7t - 8 = 0 \cr
& (t + 1)(t - 8) = 0 \cr
& t = - 1\,\,of\,\,t = 8 \cr
& 4^x = - 1\,\,kan\,\,niet \cr
& 4^x = 8 \cr
& 2^{2x} = 2^3 \cr
& 2x = 3 \cr
& x = 1\frac{1}
{2} \cr}
$

* Dat is niet altijd zo!:-) Neem bijvoorbeeld $\sin(a)=\sin(b)$ om maar 's wat te noemen.