Op de schuine zijde van een willekeurige rechthoekige driehoek teken je een vierkant met zijde c. Je vult de figuur aan met dezelfde driehoeken zodat je groot vierkant krijgt.
De oppervlakte van het grote vierkant is gelijk aan de oppervlakte van 4 stukken van $ \frac{1} {2} $·a·b=2ab en het grote vierkant c2.
Je kunt de oppervlakte van het grote vierkant ook schrijven als (a+b)2.
Dus moet gelden:
(a + b)2 = 2ab + c2 a2 + 2ab + b2 = c2 + 2ab a2 + b2 = c2 ... en dat is de stelling van Pythagoras. |