Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




1. voorkennis

Rekenen met machten

$a^{0}=1$
$a^{1}=a$
$a^{p}\cdot a^{q}=a^{p+q}$
$a^{p}:a^{q}=a^{p-q}$
$(a^{p})^{q}=a^{p\cdot q}$
$(a\cdot b)^{p}=a^{p}\cdot b^{p}$
$a^{-p}=\frac{1}{a^{p}}$
$a^{\frac{1}{2}}=\sqrt{a}$ voor $(a\ge 0)$
$a^{\frac{p}{q}}=^{q}\sqrt{a^{p}}$ voor $(a\ge 0)$

Sigma-notatie

Met het wiskundige symbool $\Sigma$ kunnen we (oneindige) reeksen kort opschrijven. De letter $\Sigma$ is de hoofdletter S uit het Griekse alfabet. Het symbool $\Sigma$ is een somteken (en heeft dus alles te maken met optellen):

De formule $
\sum\limits_{k = 1}^\infty  {\frac{1}{{2^k }}}
$ staat voor de oneindige som $
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ...
$. Voor elk getal $
k = 1,\,\,2,\,\,3,\,\,...
$ tel je de breuken bij elkaar op.

$
\sum\limits_{k = 1}^5 k = 1 + 2 + 3 + 4 + 5 = 15
$

$
\sum\limits_{k = 0}^5 {\left( {\begin{array}{*{20}c}
5\\
k\\
\end{array}} \right) \cdot 2^k } = 3^5
$

$
\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c}
n\\
k\\
\end{array}} \right)}  = 2^n
$

$
\sum\limits_{k = 1}^\infty  {\frac{1}{{2^k }}}  = 1

©2004-2024 W.v.Ravenstein