Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




1. voorkennis

Vergelijkingen en vectorvoorstellingen van lijnen

Lineaire vergelijking: $ax+by=c$
De bijbehorende grafiek is een rechte lijn waarvan $
\left( {\begin{array}{*{20}c}
a\\
b\\
\end{array}} \right)
$ de normaalvector is. De normaalvector staat loodrecht op de lijn.

Gegeven: $
l:\left( {\begin{array}{*{20}c}
x\\
y\\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
1\\
2\\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
3\\
4\\
\end{array}} \right)
$

Steunvector: $
\left( {\begin{array}{*{20}c}
1\\
2\\
\end{array}} \right)
$

Richtingsvector: $
\left( {\begin{array}{*{20}c}
3\\
4\\
\end{array}} \right)
$

$
\underline n _l  = \left( {\begin{array}{*{20}c}
4\\
{-3}\\
\end{array}} \right)
$ is een normaalvector van $l$

Er geldt:

$
\underline r _l  \cdot \underline n _l  = 0
$ (inproduct)

Kwadraatafsplitsen

$
\begin{array}{l}
x^2 - 8x + 2 = (x - 4)^2 - 14 \\
x^2 + 4x + 4 = (x + 2)^2 \\
x^2 - 12x = \left( {x - 6} \right)^2 - 36 \\
\end{array}
$

Topformule

De grafiek van $y = a\left( {x - p} \right)^2 + q$ heeft als top $\left( {p,q} \right)$.

Vergelijkingen oplossen

$
\begin{array}{l}
x^2 + 4x - 12 = 0 \\
(x + 2)^2 - 4 - 12 = 0 \\
(x + 2)^2 - 16 = 0 \\
(x + 2)^2 = 16 \\
x + 2 = - 4 \vee x + 2 = 4 \\
x = - 6 \vee x = 2 \\
\end{array}
$

Voorbeeld 2

$
\begin{array}{l}
x^2 + 4x - 2 = 0 \\
(x + 2)^2 - 6 = 0 \\
(x + 2)^2 = 6 \\
x + 2 = - \sqrt 6 \vee x + 2 = \sqrt 6 \\
x = - 2 - \sqrt 6 \vee x = - 2 + \sqrt 6 \\
\end{array}
$

©2004-2024 W.v.Ravenstein