Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




herleiden van machten

Voorbeelden

$
\eqalign{
& \left( {a^3 } \right)^4 = a^{12} \cr
& \left( {3a} \right)^4 = 81a^4 \cr
& \left( { - 3a} \right)^4 = 81a^4 \cr
& - \left( {3a} \right)^4 = - 81a^4 \cr
& \frac{{a^8 }}
{{a^2 }} = a^6 \cr
& \frac{{8a^8 }}
{{2a^2 }} = 4a^6 \cr}
$

Gevolgen van de rekenregels

Eén van de rekenregels luidt:

$
\Large \frac{{a^p }}
{{a^q }} = a^{p - q}
$

Dat is leuk bedacht, maar gaat dat wel goed?

  • Wat nu als p=3 en q=2?
  • Of als p=q?
  • Of als p$< $q?

Op deze pagina gaan we daar 's naar kijken!

Wat is 21?

$
\Large \frac{{2^3 }}
{{2^2 }} = 2^1
$ volgens de rekenregel.

Je kunt de machten ook eerst uitrekenen:

$
\Large \frac{{2^3 }}
{{2^2 }} = \frac{8}
{4} = 2
$

Dus 21 is hetzelfde als 2.

...en dat is wel een beetje gek, ergens...

Als p=q?

Volgens de regel is $
\Large \frac{{2^5 }}
{{2^5 }} = 2^0
$.

Uitrekenen: $
\Large \frac{{2^5 }}
{{2^5 }} = \frac{{32}}
{{32}} = 1
$

Kennelijk is 20=1

Misschien is a0 altijd 1?!

Het moet niet gekker worden...

Als p$
<
$q?

Volgens de regel:

$
\Large \frac{{2^3 }}
{{2^5 }} = 2^{ - 2}
$

Negatieve exponenten? Wat is dat nu?

$
\Large \frac{{2^3 }}
{{2^5 }} = \frac{8}
{{32}} = \frac{1}
{4} = \frac{1}
{{2^2 }}
$

Nou ja...:-)

Kan het nog gekker?

Wat dacht je hiervan?

Ik heb een getal dat vermenigvuldigd met zichzelf gelijk is aan 2. Welk getal is dat?

Er zijn mensen die denken dat dat getal gelijk moet zijn aan $
2^{\frac{1}
{2}}
$ want:

$
2^{\frac{1}
{2}}  \cdot 2^{\frac{1}
{2}}  = 2^{\frac{1}
{2} + \frac{1}
{2}}  = 2^1  = 2
$

Wat denk jij?

©2004-2024 W.v.Ravenstein