Knikkers uit een vaas

In een vaas zitten 12 witte en 8 rode knikkers. Je pakt hieruit 4 knikkers zonder terugleggen. Wat is de kans op 3 witte knikkers?

Antwoord

Als je niet op de volgorde let, dan zijn er
$
\left( {\begin{array}{*{20}c}
{12} \\
3 \\
\end{array}} \right)
$ manieren om 3 van de 12 witte knikkers te pakken.
Er zijn $
\left( {\begin{array}{*{20}c}
8 \\
1 \\
\end{array}} \right)
$ manieren om 1 van de 8 rode knikkers te pakken.
In totaal zijn er dus $
\left( {\begin{array}{*{20}c}
{12} \\
3 \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
8 \\
1 \\
\end{array}} \right)
$ manieren om 3 witte en 1 rode knikker uit de vaas te pakken.
In totaal zijn er $
\left( {\begin{array}{*{20}c}
{20} \\
4 \\
\end{array}} \right)
$ manieren om 4 knikkers uit de vaas te pakken.

P(3 wit en 1 rood)=$
\frac{{\left({\begin{array}{*{20}c}
{12}\\
3\\
\end{array}}\right)\cdot\left({\begin{array}{*{20}c}
8\\
1\\
\end{array}}\right)}}{{\left({\begin{array}{*{20}c}
{20}\\
4\\
\end{array}}\right)}}=\Large\frac{{352}}{{969}}
$

Meerdere kleuren

In een vaas zitten 5 rode, 4 groene en 1 blauwe knikker. Je pakt 3 knikkers uit de vaas zonder terugleggen. Bereken de kans op 3 verschillende kleuren.

Antwoord

$P(X=3)=\frac{{\left( {\begin{array}{*{20}c}
5\\
1\\
\end{array}} \right)\left( {\begin{array}{*{20}c}
4\\
1\\
\end{array}} \right)\left( {\begin{array}{*{20}c}
1\\
1\\
\end{array}} \right)}}{{\left( {\begin{array}{*{20}c}
{10}\\
3\\
\end{array}} \right)}} = \frac{1}{6}
$

Voorbeeld

Bij een loterij zijn 40 loten verkocht. Er zijn 3 eerste prijzen en 7 tweede prijzen. Je koopt 3 loten.

  • Bereken de kans op 1 eerste prijs en 2 tweede prijzen.

Antwoord

$
P(G) = \frac{{\left( {\begin{array}{*{20}c}
3\\
1\\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
7\\
2\\
\end{array}} \right)}}{{\left( {\begin{array}{*{20}c}
{40}\\
3\\
\end{array}} \right)}} \approx 0,006
$

 Zie ook hypergeometrische verdeling