$ \large\begin{array}{l} \sqrt {\frac{{1143}}{{32}} + \frac{{105}}{{32}}\sqrt {65} } = ? \\ a = \frac{1}{2}\sqrt 2 \sqrt {\frac{{1143}}{{32}} - \sqrt {\left( {\frac{{1143}}{{32}}} \right)^2 - \left( {\frac{{105}}{{32}}} \right)^2 \cdot 65}} = \frac{5}{8}\sqrt {15} \\ b = \frac{{\frac{{105}}{{32}}\sqrt 2 }}{2{\sqrt {\frac{{1143}}{{32}} - \sqrt {\left( {\frac{{1143}}{{32}}} \right)^2 - \left( {\frac{{105}}{{32}}} \right)^2 \cdot 65} }}} = \frac{7}{{40}}\sqrt {15} \\ c = 65 \\ \sqrt {\frac{{1143}}{{32}} + \frac{{105}}{{32}}\sqrt {65} } = \frac{5}{8}\sqrt {15} + \frac{7}{{40}}\sqrt {15} \cdot \sqrt {65} = \frac{5}{8}\sqrt {15} + \frac{7}{8}\sqrt {39} \\ \end{array}$
|