Machten vermenigvuldigen en optellen

Een product van machten met hetzelfde grondtal kun je herleiden tot één macht door de exponenten op te tellen. Het grondtal blijft gelijk.

  • $a^p·a^q=a^{p+q}$

Voorbeeld

  • $a^2·a^3=a^5$

Machten optellen

Machten kan je meestal niet optellen, behalve als het gelijksoortige termen zijn. Dat wil zeggen met hetzelfde grondtal en dezelfde exponent.

Voobeeld

  • $x+x^2+x^3$ kan je niet korter opschrijven omdat het geen gelijksoortige termen zijn.
  • $2x^2+3x^2-x^2$ kan je schrijven als $4x^2$ omdat het hier gaat om gelijksoortige termen.

De macht van een macht en macht van een product

Bij een macht van een macht vermenigvuldig je de exponenten:

  • $(a^p)^q=a^{pq}$

Bij de macht van een product neem je elke factor tot die macht.

  • $(ab)^p=a^pb^p$

Voorbeelden

  • $(3ab)^2-(a^2)^3=9a^2b^2-a^6$
  • $(2xy^2z^3)^3=8x^3y^6z^9$
  • $(2\frac{1}{2}x^3-1)^2=6\frac{1}{4}x^6-5x^3+1$

Machten delen

Bij het delen van machten met hetzelfde grondtal trek je de exponent in de noemer af van de exponent in de teller.

  • $\eqalign{\frac{a^p}{a^q}=a^{p-q}}$

Voorbeeld

$\eqalign{\frac{(3ab)^5}{(3ab)^3}=(3ab)^2=9a^2b^2}$

Regels voor machten

  • $a^p·a^q=a^{p+q}$
  • $\eqalign{\frac{a^p}{a^q}=a^{p-q}}$
  • $\eqalign{\frac{a^p}{a^p}=1}$
  • $(a^p)^q=a^{pq}$
  • $(ab)^p=a^pb^p$
  • $a^p+a^q$ kan niet korter