Bij het oplossen van tweedegraads (of hogere graads) vergelijkingen gebruik je vaak een belangrijke eigenschap van vermenigvuldigen.

Als a · b = 0, dan geldt:
a = 0 of b = 0

Dat betekent dat als een product (het resultaat van een vermenigvuldiging) de waarde nul heeft, minstens één van de factoren (de 'dingen' die je met elkaar vermenigvuldigt) nul moet zijn.
Dit kun je gebruiken om vergelijkingen op te lossen.

Voorbeeld
x · (x + 1) = 0

Je hebt hier te maken met twee factoren: x en x + 1.
Eén van deze twee factoren moet nul zijn, dus:
x = 0 of x + 1 = 0
Conclusie: x = 0 of x = -1.

Niet alle vergelijkingen bestaan natuurlijk uit een product, maar vaak kun je er voor zorgen dat er wel een product komt te staan.

Voorbeeld
x2 + x = 0
kun je schrijven als:
x · (x + 1) = 0
Deze bewerking heet ontbinden (in factoren).
Je hebt de vergelijking x2 + x = 0 herschreven als een product dat de waarde nul heeft. Dit laatste type vergelijkingen kun je oplossen met de 'eigenschap' van producten (zie boven).

Voordat je gaat ontbinden moet je de vergelijking op nul herleiden.

Voorbeeld
x3 = 2x2
x3 - 2x2 = 0
x2 · (x - 2) = 0
x2 = 0 of x - 2 = 0
x = 0 of x = 2

Samengevat:

  • Eerst op nul herleiden
  • Ontbinden in factoren
  • Gebruik "Als a · b = 0, dan a = 0 of b = 0"

Ontbinden in factoren

Bij tweedegraads verdelijkingen zijn er twee soorten van ontbinden in factoren:
  • Een zo groot mogelijke term buiten haakjes halen.
  • Van een drieterm een product van 2 tweetermen maken.
Deze laatste soort staat wel bekend onder de naam product-som methode.

Voorbeeld
x2 + 8x + 12 kun je ontbinden als (x + 6)(x + 2).
Controle:
(x + 6)(x + 2) = x2 + 2x + 6x + 12 = x2 + 8x + 12
Klopt!

De vraag is nu: hoe kun je zo'n ontbinding vinden?

Laten we eens kijken naar wat voorbeelden:
(x + 2)(x + 3) = x2 + 5x + 6
(x + 2)(x-3) = x2 - x - 6
(x + 1)(x - 4) = x2 - 3x - 4
(x - 4)(x - 4) = x2 - 8x + 16
(x - 3)(x + 3) = x2 - 9

Als het goed is vallen er twee dingen op:

  • Het getal voor de x aan de rechter kant is de som (optellen dus) van de twee getallen aan de linker kant.
  • Het getal aan de rechter kant is het product (vermenigvuldigen dus) van de twee getallen aan de linker kant.
Schematisch:

q6673img1.gif

Nu andersom:

Je wilt een ontbinding vinden voor x2 + 7x + 12
Op grond van het bovenstaande moet je twee getallen zoeken die opgeteld 7 zijn en vermenigvuldigd 12.
Mogelijke kandidaten (alle mogelijke tweetallen met als product 12):

q6832img1.gif

Als je nu ook nog naar de som kijkt, krijg je volgende tabel:

q6832img2.gif

Ik zocht twee getallen met product 12 en som 7, dus 3 en 4.
Je kunt x2 + 7x + 12 dus ontbinden als (x + 3)(x + 4)