$
\eqalign{
  & 6x^2  - 11x - 10 = 0  \cr
  & 6\left( {x^2  - {{11} \over 6}x} \right) - 10 = 0  \cr
  & 6\left( {\left( {x - {{11} \over {12}}} \right)^2  - {{121} \over {144}}} \right) - 10 = 0  \cr
  & 6\left( {x - {{11} \over {12}}} \right)^2  - {{121} \over {24}} - 10 = 0  \cr
  & 6\left( {x - {{11} \over {12}}} \right)^2  - {{361} \over {24}} = 0  \cr
  & 6\left( {x - {{11} \over {12}}} \right)^2  = {{361} \over {24}}  \cr
  & \left( {x - {{11} \over {12}}} \right)^2  = {{361} \over {144}}  \cr
  & x - {{11} \over {12}} =  - \sqrt {{{361} \over {144}}}  \vee x - {{11} \over {12}} = \sqrt {{{361} \over {144}}}   \cr
  & x - {{11} \over {12}} =  - {{19} \over {12}} \vee x - {{11} \over {12}} = {{19} \over {12}}  \cr
  & x =  - {2 \over 3} \vee x = 2{1 \over 2} \cr}
$

Wat heet handig:-)