$
\eqalign{
& x + 2\sqrt x = 8 \cr
& 2\sqrt x = - x + 8 \cr
& 4x = ( - x + 8)^2 \cr
& 4x = x^2 - 16x + 64 \cr
& x^2 - 20x + 64 = 0 \cr
& (x - 4)(x - 16) = 0 \cr
& x = 4 \vee x = 16\,\,(v.n.) \cr
& x = 4 \cr}
$
$
\eqalign{
& \sqrt {x^2 - 4} + x + 2 = 0 \cr
& \sqrt {x^2 - 4} = - x - 2 \cr
& x^2 - 4 = ( - x - 2)^2 \cr
& x^2 - 4 = x^2 + 4x + 4 \cr
& - 4 = 4x + 4 \cr
& 4x = - 8 \cr
& x = - 2 \cr}
$

Het 'principe' is: isoleren, kwadrateren en controleren. Die laatste stap is belangrijk omdat je bij het kwadrateren mogelijkerwijs oplossingen creëert die er niet zijn...


Voorbeeld

Los exact op:

  • $\eqalign{ \frac{{4 - 2x + \sqrt {2 - x} }} {{\sqrt {2 - x} }} = 0 }$

Uitwerking: