$
\begin{array}{l}
 y = 25 - 5^{\frac{1}{2}x + 2}  \\
 y - 25 =  - 5^{\frac{1}{2}x + 2}  \\
  - y + 25 = 5^{\frac{1}{2}x + 2}  \\
 \frac{1}{2}x + 2 = {}^5\log \left( { - y + 25} \right) \\
 \frac{1}{2}x = {}^5\log \left( { - y + 25} \right) - 2 \\
 x = 2 \cdot {}^5\log \left( { - y + 25} \right) - 4 \\
 \end{array}
$

$
\begin{array}{l}
y = 3 \cdot 2^x + 5 \\
3 \cdot 2^x = y - 5 \\
2^x = \frac{1}{3}y - 1\frac{2}{3} \\
x = {}^2\log \left( {\frac{1}{3}y - 1\frac{2}{3}} \right) \\
\end{array}
$

of...

$
\begin{array}{l}
y = 3 \cdot 2^x + 5 \\
3 \cdot 2^x = y - 5 \\
2^x = \frac{{y - 5}}{3} \\
x = {}^2\log \left( {\frac{{y - 5}}{3}} \right) \\
\end{array}
$

$ \begin{array}{l}  y = 10^{x^2 }  - 1 \\  10^{x^2 }  = y + 1 \\  x^2  = \log (y + 1) \\  x = \sqrt {\log (y + 1)}  \\  \end{array} $