Opgave 1

a.

$
\eqalign{
  & {}^3\log \left( {2x^2  - 3} \right) = 6  \cr
  & 2x^2  - 3 = 3^6   \cr
  & 2x^2  - 3 = 729  \cr
  & 2x^2  = 732  \cr
  & x^2  = 366  \cr
  & x =  - \sqrt {366} \,\,of\,\,x = \sqrt {366}  \cr}
$

b.

$
\eqalign{
  & {}^{\frac{1}
{2}}\log \left( {\frac{1}
{{4x}}} \right) = 4  \cr
  & \frac{1}
{{4x}} = \left( {\frac{1}
{2}} \right)^4   \cr
  & \frac{1}
{{4x}} = \frac{1}
{{16}}  \cr
  & 4x = 16  \cr
  & x = 4 \cr}
$

c.

$
\eqalign{
  & {}^2\log \left( {4 - 30x^2 } \right) =  - 2  \cr
  & 4 - 30x^2  = 2^{ - 2}   \cr
  & 4 - 30x^2  = \frac{1}
{4}  \cr
  & 16 - 120x^2  = 1  \cr
  & 120x^2  = 15  \cr
  & x^2  = \frac{1}
{8}  \cr
  & x =  - \sqrt {\frac{1}
{8}} \,\,of\,\,x = \sqrt {\frac{1}
{8}}   \cr
  & x =  - \frac{1}
{4}\sqrt 2 \,\,of\,\,x = \frac{1}
{4}\sqrt 2  \cr}
$

Opgave 2
$3^{x+1}=80$
$x+1=^3log(80)$
$x=-1+^3log(80)$
$5+2^{3x}=25$
$2^{3x}=20$
$3x=^2log(20)$
$x=\frac{1}{3}·^2log(20)$
$\eqalign{4-log(\frac{1}{x})=2}$
$\eqalign{-log(\frac{1}{x})=-2}$
$\eqalign{log(\frac{1}{x})=2}$
$\eqalign{\frac{1}{x}=100}$
$\eqalign{x=\frac{1}{100}}$
Opgave 3
$
\begin{array}{l}
 y = 25 - 5^{\frac{1}{2}x + 2}  \\
 y - 25 =  - 5^{\frac{1}{2}x + 2}  \\
  - y + 25 = 5^{\frac{1}{2}x + 2}  \\
 \frac{1}{2}x + 2 = {}^5\log \left( { - y + 25} \right) \\
 \frac{1}{2}x = {}^5\log \left( { - y + 25} \right) - 2 \\
 x = 2 \cdot {}^5\log \left( { - y + 25} \right) - 4 \\
 \end{array}
$

$
\begin{array}{l}
y = 3 \cdot 2^x + 5 \\
3 \cdot 2^x = y - 5 \\
2^x = \frac{1}{3}y - 1\frac{2}{3} \\
x = {}^2\log \left( {\frac{1}{3}y - 1\frac{2}{3}} \right) \\
\end{array}
$

of...

$
\begin{array}{l}
y = 3 \cdot 2^x + 5 \\
3 \cdot 2^x = y - 5 \\
2^x = \frac{{y - 5}}{3} \\
x = {}^2\log \left( {\frac{{y - 5}}{3}} \right) \\
\end{array}
$

$ \begin{array}{l}  y = 10^{x^2 }  - 1 \\  10^{x^2 }  = y + 1 \\  x^2  = \log (y + 1) \\  x = \sqrt {\log (y + 1)}  \\  \end{array} $