$
\begin{array}{l}
\left\{ \begin{array}{l}
90 = a \cdot 30^n \\
190 = a \cdot 70^n \\
\end{array} \right. \\
\left\{ \begin{array}{l}
a = \frac{{90}}{{30^n }} \\
a = \frac{{190}}{{70^n }} \\
\end{array} \right. \\
\frac{{90}}{{30^n }} = \frac{{190}}{{70^n }} \\
90 \cdot 70^n = 190 \cdot 30^n \\
\log \left( {90 \cdot 70^n } \right) = \log \left( {190 \cdot 30^n } \right) \\
\log \left( {90} \right) + \log \left( {70^n } \right) = \log \left( {190} \right) + \log \left( {30^n } \right) \\
\log \left( {90} \right) + n \cdot \log \left( {70} \right) = \log \left( {190} \right) + n \cdot \log \left( {30^n } \right) \\
n \cdot \log \left( {70} \right) - n \cdot \log \left( {30} \right) = \log \left( {190} \right) - \log \left( {90} \right) \\
n \cdot \left( {\log \left( {70} \right) - \log \left( {30} \right)} \right) = \log \left( {190} \right) - \log \left( {90} \right) \\
\left\{ \begin{array}{l}
n = \frac{{\log \left( {190} \right) - \log \left( {90} \right)}}{{\log \left( {70} \right) - \log \left( {30} \right)}} \approx {\rm{0}}{\rm{,882}} \\
{\rm{a = }}\frac{{90}}{{30^{{\rm{0}}{\rm{,882}}} }} \approx 4,48 \\
\end{array} \right. \\
W = 4,48 \cdot m^{0,882} \\
\end{array}
$
|