`
Neem AB=x en noem de hoek $\alpha$. Er geldt:
$
\eqalign{
& \tan \left( \alpha \right) = \frac{3}
{x} \Rightarrow \cr
& \tan \left( {2\alpha } \right) = \frac{{2\tan \left( \alpha \right)}}
{{1 - \tan ^2 \left( \alpha \right)}} \cr
& \tan \left( {2\alpha } \right) = \frac{{2 \cdot \frac{3}
{x}}}
{{1 - \left( {\frac{3}
{x}} \right)^2 }} = \frac{{\frac{6}
{x}}}
{{1 - \frac{9}
{{x^2 }}}} \cr
& \tan \left( {2\alpha } \right) = \frac{x}
{5} \cr
& Dus: \cr
& \frac{{\frac{6}
{x}}}
{{1 - \frac{9}
{{x^2 }}}} = \frac{x}
{5} \Rightarrow x^2 = 39 \cr
& AF^2 = x^2 + 5^2 = 39 + 25 = 64 \cr
& AF = 8 \cr}
$