Uitwerkingen opdracht A

 


$
\begin{array}{l}
 x^2 + 4x = 0 \\
 (x + 2)^2  - 4 = 0 \\
 (x + 2)^2  = 4 \\
 x + 2= -2 \vee x + 2 = 2 \\
 x = - 4 \vee x = 0 \\
 \end{array}
$


$
\begin{array}{l}
 x^2  + 7x + 12\frac{1}{4} = 0 \\
 \left( {x + 3\frac{1}{2}} \right)^2=0 \\
 x + 3\frac{1}{2} = 0 \\
 x =-3\frac{1}{2} \\
 \end{array}
$


$
\begin{array}{l}
 x^2  - 4x = 0 \\
 (x - 2)^2  - 4 = 0 \\
 (x - 2)^2  = 4 \\
 x - 2 =-2 \vee x - 2 = 2 \\
 x = 0 \vee x = 4 \\
 \end{array}
$


$
\begin{array}{l}
 x^2  = x \\
 x^2  - x = 0 \\
 \left( {x - \frac{1}{2}} \right)^2  - \frac{1}{4} = 0 \\
 \left( {x - \frac{1}{2}} \right)^2  = \frac{1}{4} \\
 x - \frac{1}{2} =  - \frac{1}{2} \vee x - \frac{1}{2} = \frac{1}{2} \\
 x = 0 \vee x = 1 \\
 \end{array}
$


$
\begin{array}{l}
 x^2 + 8x + 4 = 0 \\
(x+4)^{2}-16+4=0 \\
(x+4)^{2}-12=0 \\
(x+4)^{2}=12 \\
x+4=-\sqrt{12}\vee x+4=\sqrt{12} \\
x=-4-\sqrt{12}\vee x=-4+\sqrt{12} \\
\end{array}
$


$
\begin{array}{l}
 x^2  = 5x + 4 \\
 x^2  - 5x = 4 \\
 \left( {x - 2\frac{1}{2}} \right)^2  - 6\frac{1}{4} = 4 \\
 \left( {x - 2\frac{1}{2}} \right)^2  = 10\frac{1}{4} \\
 x - 2\frac{1}{2} =  - \sqrt {10\frac{1}{4}}  \vee x - 2\frac{1}{2} = \sqrt {10\frac{1}{4}}  \\
 x = 2\frac{1}{2} - \frac{1}{2}\sqrt {41}  \vee x = 2\frac{1}{2} + \frac{1}{2}\sqrt {41}  \\
 \end{array}
$


$
\begin{array}{l}
 x^2  + 2x = 31 \\
 (x + 1)^2  - 1 = 31 \\
 (x + 1)^2  = 32 \\
 x + 1 =  - \sqrt {32}  \vee x + 1 = \sqrt {32}  \\
 x =  - 1 - 4\sqrt {2}  \vee x =  - 1 + 4\sqrt {2}  \\
 \end{array}
$


$
\begin{array}{l}
 2x^2  + 4x = 3 \\
 2\left( {x^2  + 2x} \right) = 3 \\
 2((x + 1)^2  - 1) = 3 \\
 2(x + 1)^2  - 2 = 3 \\
 2(x + 1)^2  = 5 \\
 (x + 1)^2  = 2\frac{1}{2} \\
 x + 1 =  - \sqrt {2\frac{1}{2}}  \vee x + 1 = \sqrt {2\frac{1}{2}}  \\
 x =  - 1 - \frac{1}{2}\sqrt {10}  \vee x =  - 1 + \frac{1}{2}\sqrt {10}  \\
 \end{array}
$


$
\begin{array}{l}
 x^2  - 27 = 2x \\
 x^2  - 2x - 27 = 0 \\
 (x - 1)^2  - 28 = 0 \\
 x = 1 - 2\sqrt {7}  \vee x = 1 + 2\sqrt {7}  \\
 \end{array}
$


$
\begin{array}{l}
 (x + 1)(x + 5) = 2x + 13 \\
 x^2  + 6x + 5 = 2x + 13 \\
 x^2  + 4x + 5 = 13 \\
 (x + 2)^2  + 1 = 13 \\
 (x + 2)^2  = 12 \\
 x =  - 2 - 2\sqrt {3}  \vee x =  - 2 +2\sqrt {3}  \\
 \end{array}
$

©2004-2024 Wiskundeleraar - login