Je kunt kwadraatafsplitsen gebruiken om tweedegraads-vergelijkingen op te lossen.
Voorbeeld 1
$
\begin{array}{l}
x^2 + 4x - 12 = 0 \\
(x + 2)^2 - 4 - 12 = 0 \\
(x + 2)^2 - 16 = 0 \\
(x + 2)^2 = 16 \\
x + 2 = - 4 \vee x + 2 = 4 \\
x = - 6 \vee x = 2 \\
\end{array}
$
|
Als de wortel niet 'leuk' uitkomt kan je de vergelijking nog steeds oplossen met kwadraatafspliten.
Voorbeeld 2
$
\begin{array}{l}
x^2 + 4x - 2 = 0 \\
(x + 2)^2 - 6 = 0 \\
(x + 2)^2 = 6 \\
x + 2 = - \sqrt 6 \vee x + 2 = \sqrt 6 \\
x = - 2 - \sqrt 6 \vee x = - 2 + \sqrt 6 \\
\end{array}
$
|