Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




7. afstanden en vectoren

De afstand van een punt tot een vlak

De afstand van het punt $
P\left( {x_P ,y_P ,z_P } \right)
$ tot het vlak $
V:ax + by + cz = d
$ is:

$
d(P,V) =
$ $
\Large\frac{{\left| {ax_P  + by_P  + cz_P  - d} \right|}}{{\sqrt {a^2  + b^2  + c^2 } }}
$

Voorbeeld 1

q10738img1.gif

Gegeven is de kubus $ABCD.EFGH$ met ribbe 4. Het punt $M$ is het midden van $CG$.

  • Bereken $d(F,BMH)$

Zie uitwerking voorbeeld 1

De afstand van een punt tot een lijn

Het berekenen van de afstand van een punt $P$ tot een lijn $l$ met behulp van vectoren:

  1. Breng door $P$ het vlak $V$ aan dat loodrecht op $l$ staat.
  2. Bereken de coördinaten van het snijpunt $A$ van $V$ en $l$.
  3. Bereken $d(P,l)=PA$

Voorbeeld 2

Van driehoek $ABC$ is $A(-3,0,3)$, $B(3,1,-1)$ en $C(0,1,1)$.

  • Bereken $d(A,BC)$

Zie uitwerking voorbeeld 2

Voorbeeld 3

Teken een kubus ABCO·DEFG met de x as langs OA, de y as langs OC en de z as langs OG. De ribbe van de kubus is 2. Als P het midden is van ribbe FG en Q het midden van ribbe BC.

  • Bereken dan de afstand van het punt P tot de lijn AQ.

Zie uitwerking voorbeeld 3

©2004-2024 W.v.Ravenstein