In het voortgezet onderwijs leer je doorgaans de product-som-methode voor het ontbinden in factoren van kwadratische formules. Meestal gaat het daarbij vooral om formules van de vorm x2+bx+c. Dat zou de indruk kunnen wekken dat ontbinden van bijvoorbeeld 2x2-5x-3 niet ‘zo maar’ kan. Maar wat denk je? Dat kan ook!
Voorbeeld
Als ik 2x2-5x+3 wil ontbinden in factoren dan vermenigvuldig ik 2 en 3. Dat is 6. Net als bij de product-som-methode ga ik op zoek naar twee getallen die vermenigvuldigd 6 zijn en opgeteld -5. Dat zijn de getallen -2 en -3.
6x2 - x – 1
Het product is -6 en de som is -1. Dat zijn dan de getallen -3 en 2.
6x2 - x -1 =
6x2 - 3x + 2x – 1 =
3x(2x - 1) + 1(2x - 1)=
(3x + 1)(2x - 1)
Nu heb je waarschijnlijk wel gezien dat de ‘volgorde’ van de ‘gesplitste term’ niet belangrijk is.
Opgaven
3x2 - x - 2
4x2 - 4x + 1
2x2 - 3x - 2
12x2 - x - 1
Toepassing
Een rechthoek met een lengte van 2x+5 en een breedte x heeft een oppervlakte van 75. Bereken de omtrek.