` Wiskundeleraar
©2012 wiskundeleraar.nl

4. de verwachtingswaarde

Toevalsvariabele

Bij een kansexperiment voegt een toevalsvariabele (stochastische variabele, stochast) aan elke uitkomst een getal toe.

Toevalsvariabelen kun je gebruiken om gebeurtenissen kort te noteren, als $P(X=2)$ of $P(1\le X\lt 4)$


Kansverdelingen

Als je aan de waarde van een toevalsvariabele (ook wel stochast genoemd) kansen toekent spreekt men van een kansverdeling.

De kansverdeling van $X$ is een tabel waarin bij elke waarde van $X$ de bijbehorende kans is vermeld.

De som van de kansen in een kansverdeling is 1.


Verwachtingswaarde

Bij de discrete toevalsvariabele $X$ met uitkomsten $x_1, x_2, x_3, ..., x_n$ hoort de verwachtingswaarde $E(X)$ met:

$
E(X) = \sum\limits_{i = 1}^n {x_i \cdot P(X = x_i )}
$


Voorbeelden van discrete kansverdelingen

  • De uniforme verdeling
  • De hypergeometrische verdeling
  • De binomiale verdeling
  • De geometrische verdeling

Voorbeeld 1

q10742img1.gif

Bij een loterij zijn 100 loten van €2,- verkocht. Er is één prijs van €50,- en drie prijzen van €10,-

  • Bereken voor een deelnemer de winstverwachting per lot.

Opgave 42 uit het boek


Voorbeeld 2

Kees gooit met een achtvlaksdobbelsteen. Hierop staan de ogen 2, 2, 2, 3, 3, 6, 7 en 11.

  • Wat is de verwachtingswaarde van het aantal ogen dat Kees gooit?

Antwoord

  • $E(X)=4\frac{1}{2}$

Volgende Vorige

Terug Home

Login View