`
	$\eqalign{
	  &  - 9{x^2} - 3x + 5 = 0  \cr
	  & 9{x^2} + 3x - 5 = 0  \cr
	  & a = 9,\,\,b = 3\,\,en\,\,c =  - 5  \cr
	  & D = {3^2} - 4 \cdot 9 \cdot  - 5 = 9 + 180 = 189  \cr
	  & x = \frac{{ - 3 \pm \sqrt {189} }}{{2 \cdot 9}} = \frac{{ - 3 \pm 3\sqrt {21} }}{{18}}  \cr
	  & x =  - \frac{1}{6} - \frac{1}{6}\sqrt {21}  \vee x =  - \frac{1}{6} + \frac{1}{6}\sqrt {21}  \cr} $
Alternatieve oplossing
	$\eqalign{
	  & 2{x^2} + x - 6 = 0  \cr
	  & 2{x^2} + 4x - 3x - 6 = 0  \cr
	  & 2x(x + 2) - 3(x + 2) = 0  \cr
	  & (2x - 3)(x + 2) = 0  \cr
	  & 2x - 3 = 0 \vee x + 2 = 0  \cr
	  & 2x = 3 \vee x =  - 2  \cr
	  & x = 1\frac{1}{2} \vee x =  - 2 \cr} $