Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




de sinusregel en de cosinusregel

In een willekeurige driehoek ABC geldt:

q10642img1.gif

Cosinusregel:

  • $a^{2}=b^{2}+c^{2}-2bccos(\alpha)$
  • $b^{2}=a^{2}+c^{2}-2accos(\beta)$
  • $c^{2}=a^{2}+b^{2}-2abcos(\gamma)$

Sinusregel:

  • $\Large\frac{a}{sin(\alpha)}$=$\Large\frac{b}{sin(\beta)}$=$\Large\frac{c}{sin(\gamma)}$

Voorbeeld 1

q10642img2.gif

  • Bereken $\angle B$ in hele graden nauwkeurig.

Uitwerking

$
\begin{array}{l}
 \frac{6}{{\sin 35^\circ }} = \frac{9}{{\sin \beta }} \\
 6 \cdot \sin \beta  = 9 \cdot \sin 35^\circ  \\
 \sin \beta  = \frac{{9 \cdot \sin 35^\circ }}{6} \approx 0,860 \\
 \beta  \approx 59^\circ \,\,of\,\,\beta  \approx 121^\circ  \\
 \end{array}
$

Die $59^o$ kan je goed zien als je $\Delta ABC$ gaat construeren.

Voorbeeld 2

q10642img3.gif

  • Bereken $\angle P$ in hele graden.

Uitwerking

$
\begin{array}{l}
 15^2  = 40^2  + 34^2  - 2 \cdot 40 \cdot 34 \cdot \cos \angle P \\
 225 = 1600 + 1156 - {\rm{2720}} \cdot \cos \angle P \\
 225 = {\rm{2756 - 2720}} \cdot \cos \angle P \\
 2720 \cdot \cos \angle P = {\rm{2531}} \\
 \cos \angle P = \frac{{{\rm{2531}}}}{{2720}} \\
 \angle P \approx 21^\circ  \\
 \end{array}
$

©2004-2024 W.v.Ravenstein