Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




vergelijkingen van lijnen

De vergelijking ax+by=c

De grafiek van de lineaire vergelijking ax+by=c is een rechte lijn.

De lijn 3x-5y=30 gaat door de punten (10,0) en (0,-6). Door y vrij te maken kan je de richtingscoëfficient vinden. Je kunt 3x-5y=30 ook schrijven als y=$\frac{3}{5}$x-6.

De vergelijking $\Large\frac{x}{a}+\Large\frac{y}{b}$=1

De vergelijking $\large\frac{x}{a}+\large\frac{y}{b}$=1 heet de assenvergelijking van een lijn. De lijn snijdt de assen in de punten (a,0) en (0,b).

De lijn door (10,0) en (0,-6) heeft als vergelijking $\large\frac{x}{10}+\large\frac{y}{-6}$=1. Ofwel 3x-5y=30.

Normaalvector

Een normaalvector van een lijn $l$ is een vector (niet de nulvector) die loodrecht op $l$ staat.

De vector $
\underline n _l  = \left( {\begin{array}{*{20}c}
a\\
b\\
\end{array}} \right)
$ is normaalvector van de lijn $l:ax+by=c$

Voorbeeld

Geef een vectorvoorstelling van de lijn $n$ door $B(5,-1)$ gaat en loodrecht staat op de lijn $m$:

$
m:\left( {\begin{array}{*{20}c}
x\\
y\\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
0\\
2\\
\end{array}} \right) + \mu \left( {\begin{array}{*{20}c}
3\\
2\\
\end{array}} \right)
$

Antwoord:

$
n:\left( {\begin{array}{*{20}c}
x\\
y\\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
5\\
{-1}\\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
2\\
{-3}\\
\end{array}} \right)
$

©2004-2024 W.v.Ravenstein