Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




de determinant van een 3×3-matrix

Een algemene manier om de determinant van een matrix te berekenen, vind je op:

Een vlotte manier om van een 3x3 matrix de determinant te berekenen, is de volgende:

Ga uit van de 3x3 matrix

$\left({\begin{array}{*{20}c}{a_1}&{a_2}&{a_3}\\{b_1}&{b_2}&{b_3}\\{c_1}&{c_2}&{c_3}\\\end{array}}\right)$

Breidt deze aan de rechterkant uit met de 1e twee kolommen:

$\left({\begin{array}{*{20}c}{a_1}&{a_2}&{a_3}&{a_1}&{a_2}\\{b_1}&{b_2}&{b_3}&{b_1}&{b_2}\\{c_1}&{c_2}&{c_3}&{c_1}&{c_2}\\\end{array}}\right)$

Tot slot teken (of denk) je 6 pijltjes zoals aangegeven:

q12033img1.gif
Langs elke pijl neem je het produkt van de 3 getallen die langs deze pijl staan.
De produkten langs de blauwe pijlen tel je op, die langs de rode pijlen trek je er weer vanaf.

Dus: determinant= a1b2c3 + a2b3c1 + a3b1c2 - a3b2c1 - a1b3c2 - a2b1c3

Bij een 2x2 matrix is t nog wat eenvoudiger: determinant = a1b2 - a2b1

Groeten,
Martijn

©2004-2024 W.v.Ravenstein