Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Het product van twee tweetermen

Bekijk dit filmpje:

  • Hoe werk je de haakjes weg bij (a+3)(b+4)?


In het filmpje wordt uitgelegd dat (a+3)(b+4)=ab+4a+3b+12. Waarom is dat zo?
Omdat (a+3)(b+4)=a(b+4)+3(b+4)=ab+4a+3b+12

Misschien is het handig om aan een 'rechthoek' of een 'vermenigvuldigingstabel' te denken:

q8492img1.gif

In dit geval heb je te maken met termen die niet gelijksoortig zijn, je kunt geen termen samennemen. Soms kan dat wel. Bedenk dat je alleen termen met dezelfde 'letters' en 'exponenten' kunt optellen. Zie #gelijksoortigetermen.

  • (x + 3)(x - 2) = x2 - 2x + 3x - 6 = x2 + x - 6
  • (x + 4)(x - 4) = x2 - 4x + 4x - 16 = x2 - 16
  • (x2 - x)(x - 2) = x3 - 2x2 - x2 - 2x = x3 -3x2 - 2x
  • (x - 2y)(x + y) = x2 + xy - 2xy - 2y2 = x2 - xy -2y2

Het product van enkelvoudige tweetermen

q6673img1.gif

  • (x - 2)(x - 5) = x2 - 7x + 10
  • (x + 8)(x + 2) = x2 + 10x + 16
  • (x - 2)(x + 3) = x2 + x - 6
  • (x + 8) (x - 5) = x2 + 3x - 40

©2004-2024 W.v.Ravenstein