Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




6. Groter, kleiner of gelijk

Soms is het 'handig' om te kunnen bepalen welke breuk groter of kleiner is. Dit kan (uiteraard) door de breuken gelijknamig te maken. Je kunt dan goed zien welke breuk het grootst is.

Welke breuk is het grootst? $\eqalign{\frac{3}{7}}$ of $\eqalign{\frac{4}{9}}$?

$
\eqalign{
  & \frac{3}
{7} = \frac{{27}}
{{63}}  \cr
  & \frac{4}
{9} = \frac{{28}}
{{63}} \cr}
$

$\eqalign{\frac{4}{9}}$ is groter...

Maar had dat niet handiger gekund?

Uitleg

Als je $\eqalign{\frac{1}{7}}$ en $\eqalign{\frac{1}{9}}$ hebt dan stellen we vast dat de tellers gelijk zijn, maar de noemer van $\eqalign{\frac{1}{9}}$ is groter dus is $\eqalign{\frac{1}{9}}$ kleiner. Conclusie: $\eqalign{\frac{1}{7}}$ is groter.

Wat is groter? $\eqalign{\frac{1}{3}}$ of $\eqalign{\frac{2}{5}}$? Als je de breuken vergelijkt dan wordt bij de tweede de teller 2 keer zo groot, maar de noemer wordt minder dan 2 keer zo groot, dus dan moet $\eqalign{\frac{2}{5}}$ wel groter zijn!

Ter controle: $\eqalign{\frac{1}{3} = \frac{5}{{15}}\,\,en\,\,\frac{2}{5} = \frac{6}{{15}}}$, dus dat zit wel goed.

Wat is groter $\eqalign{\frac{2}{3}}$ of $\eqalign{\frac{3}{5}}$? De teller wordt $\eqalign{1\frac{1}{2}}$ keer zo groot, maar de noemer wordt meer dan $\eqalign{1\frac{1}{2}}$ zo groot, dus $\eqalign{\frac{2}{3}}$ is groter.

Dus ik bedoel maar...:-)

©2004-2024 W.v.Ravenstein