`
Voorbeeld 1
$
\eqalign{
& 3\sin (x) - 2\sin ^2 (x) = 1 \cr
& 2\sin ^2 (x) - 3\sin (x) + 1 = 0 \cr
& (\sin (x) - 1)(2\sin (x) - 1) = 0 \cr
& \sin (x) = 1 \vee 2\sin (x) = 1 \cr
& \sin (x) = 1 \vee \sin (x) = \frac{1}
{2} \cr
& x = \frac{1}
{2}\pi + k \cdot 2\pi \vee x = \frac{1}
{6}\pi + k \cdot 2\pi \vee x = \frac{5}
{6}\pi + k \cdot 2\pi \cr}
$
Voorbeeld 2
$
\eqalign{
& \frac{1}
{7}\sin \left( {x - \frac{1}
{3}\pi } \right) \cdot \cos ^2 \left( x \right) = 0 \cr
& \sin \left( {x - \frac{1}
{3}\pi } \right) = 0 \vee \cos ^2 \left( x \right) = 0 \cr
& x - \frac{1}
{3}\pi = k \cdot \pi \vee x = \frac{1}
{2}\pi + k \cdot \pi \cr
& x = \frac{1}
{3}\pi + k \cdot \pi \vee x = \frac{1}
{2}\pi + k \cdot \pi \cr}
$