`
$
\sqrt 2 \cdot \sin (2x - \pi ) = 1
$
$
\sin (2x - \pi ) = \frac{1}{2}\sqrt 2
$
$
2x - \pi = \frac{1}{4}\pi + k \cdot 2\pi
$ of $
2x - \pi = \frac{3}{4}\pi + k \cdot 2\pi
$
$
2x = 1\frac{1}{4}\pi + k \cdot 2\pi
$ of $
2x = 1\frac{3}{4}\pi + k \cdot 2\pi
$
$
x = \frac{5}{8}\pi + k \cdot \pi
$ of $
x = \frac{7}{8}\pi + k \cdot \pi
$