$(a+2)²+a+10=a²+5a+14$
$3a·b-a(b+2)=2ab-2a$
$\eqalign{
& \frac{{10ab}}
{{5b}} =2a }$
$(a^{5})^{3} – (2a^{4})^{2}·-3a^{7}=13a^{15}$
$\sqrt{128}+3\sqrt{32}=20\sqrt{2}$
|
$4a-6b+a+7b=5a+b$
$(a-b)(a+b)=a^{2}-b^{2}$
$3\sqrt 2 + 5\sqrt 2 = 8\sqrt 2$
$\Large\frac{4a^{2}b^{3}}{2ab·2ab^{2}}$=$1$
$3a-(a-2)=2a+2$
|
$-3p·2q-p·4q=-10pq$
$p+p+p+p=4p$
$3a^{2}b-2a^{2}b=a^{2}b$
$\Large\frac{(p-1)(p+1)}{p+1}$=$p-1$
$\Large\frac{p^{4}-3p^{3}}{p^{2}}$=$p^{2}-3p$
|